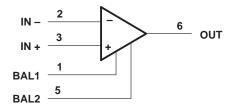

SLOS011C - MARCH 1987 - REVISED OCTOBER 1997

- Low Input Bias Current, 50 pA Typ
- Low Input Noise Current, 0.01 pA/√Hz Typ
- Low Supply Current, 2 mA Typ
- High Input impedance, 10¹² Ω Typ
- Low Total Harmonic Distortion
- Low 1/f Noise Corner, 50 Hz Typ
- Package Options Include Plastic Small-Outline (D) and Standard (P) DIPs

NC - No internal connection


description

This device is a low-cost, high-speed, JFET-input operational amplifier with very low input offset voltage and a maximum input offset voltage drift. It requires low supply current, yet maintains a large gain-bandwidth product and a fast slew rate. In addition, the matched high-voltage JFET input provides very low input bias and offset currents.

The LF411 can be used in applications such as high-speed integrators, digital-to-analog converters, sample-and-hold circuits, and many other circuits.

The LF411C is characterized for operation from 0°C to 70°C. The LF411I is characterized for operation from –40°C to 85°C.

symbol

AVAILABLE OPTIONS

	Viemov	PACKAG	SE .
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	PLASTIC DIP (P)
0°C to 70°C	2 mV	LF411CD	LF411CP
-40°C to 85°C	2 mV	LF411ID	LF411IP

The D packages are available taped and reeled. Add the suffix R to the device type (i.e., LF411CDR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS011C - MARCH 1987 - REVISED OCTOBER 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+}	18 V
Supply voltage, V _{CC}	
Differential input voltage, V _{ID}	±30 V
Input voltage, V _I (see Note 1)	±15 V
Duration of output short circuit	Unlimited
Continuous total power dissipation	500 mW
Package thermal impedance, θ_{AA} (see Note 2): D package	
P package	104°C/W
Storage temperature range, T _{stg}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

NOTES: 1. Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.

recommended operating conditions

	C SU	FFIX	I SUFFIX		UNIT
	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{CC +}	3.5	18	3.5	18	V
Supply voltage, V _{CC} –	-3.5	-18	-3.5	-18	V
Operating free-air temperature, T _A	0	70	-40	-85	°C

electrical characteristics over operating free-air temperature range, $V_{CC\pm}$ = ± 15 V (unless otherwise specified)

PARAMETER		TEST CONDITIONS		TA		MIN	TVD	MAY	LINIT
				LF411C	LF411I	IVIIIV	TYP	MAX	UNIT
VIO	Input offset voltage	$V_{IC} = 0$,	$R_S = 10 \text{ k}\Omega$	25°C	25°C		0.8	2	mV
αΝΙΟ	Average temperature coefficient of input offset voltage	V _{IC} = 0,	$R_S = 10 \text{ k}\Omega$				10	20†	μV/°C
lio	land to offer at a company t	VIC = 0		25°C	25°C		25	100	pА
110	IO Input offset current‡			70°C	85°C			2	nA
1	toward telephone at the	V: 0		25°C	25°C		50	200	pА
IB	Input bias current‡	$V_{IC} = 0$		70°C	85°C			4	nA
VICR	Common-mode input voltage range					±11	-11.5 to 14.5		V
V _{OM}	Maximum peak output-voltage swing	R _L = 10 kΩ				±12	±13.5		V
Λ	Large-signal differential	$V_O = \pm 10 \text{ V}, R_L$	B 2 kO	25°C	25°C	25	200		V/mV
AVD	voltage		$R_L = 2 k\Omega$	0°C to 70°C	-40°C to 85°C	15	200		V/IIIV
rį	Input resistance	T _J = 25°C					1012		Ω
CMR R	Common-mode rejection ratio	$R_S \le 10 \text{ k}\Omega$				70	100		dB
ksvr	Supply-voltage rejection ratio	See Note 3				70	100		dB
ICC	Supply current						2	3.4	mA

 $^{^{\}dagger}$ At least 90% of the devices meet this limit for α VIO.

NOTE 3: Supply-voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously.

^{2.} The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

[‡] Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as possible.

LF411 JFET-INPUT OPERATIONAL AMPLIFIER

SLOS011C - MARCH 1987 - REVISED OCTOBER 1997

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP MA	X UNIT
SR	Slew rate		8	13	V/μs
В1	Unity-gain bandwidth		2.7	3	MHz
Vn	Equivalent input noise voltage	$f = 1 \text{ kHz}, R_S = 20 \Omega$		18	nV/√Hz
In	Equivalent input noise current	f = 1 kHz		0.01	pA/√Hz

i.com 17-Oct-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
LF411CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LF411CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LF411CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LF411CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LF411CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
LF411CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
LF411ID	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
LF411IDR	OBSOLETE	SOIC	D	8	•	TBD	Call TI	Call TI
LF411IP	OBSOLETE	PDIP	Р	8	•	TBD	Call TI	Call TI

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

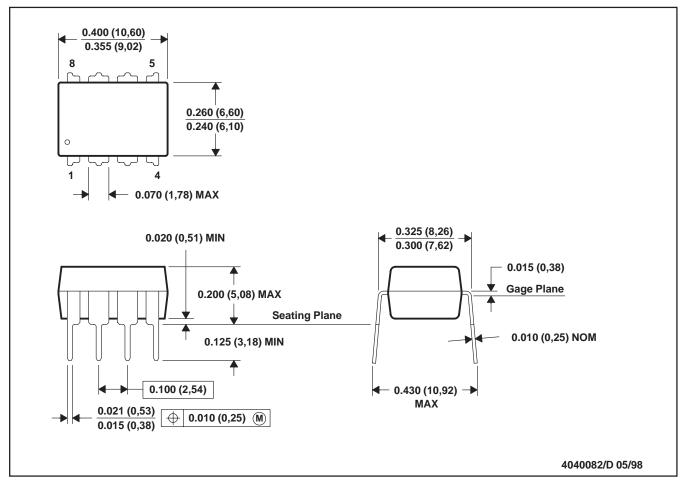
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

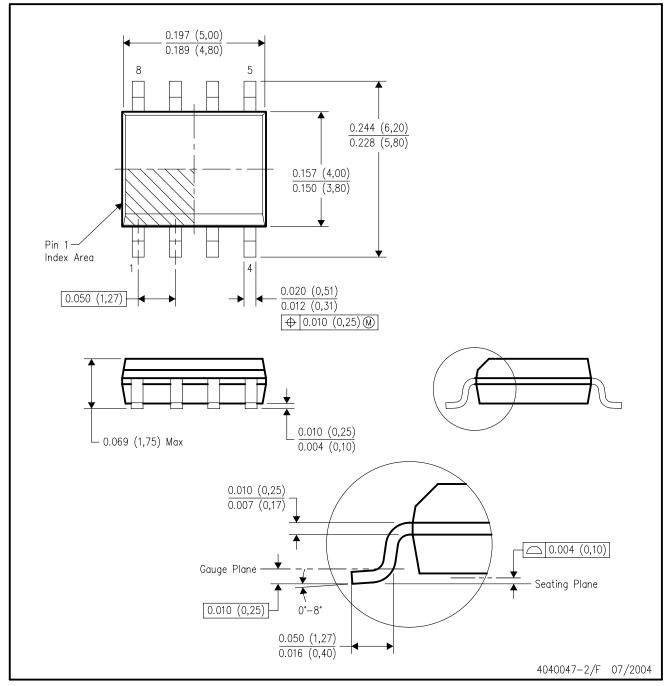

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated